
Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Java Beans

JavaBeans are classes that encapsulate many objects into a single object (the
bean). It is a java class that should follow following conventions:

1- Java Bean must implement Serializable (Serialization is a mechanism of
converting the state of an object into a byte stream. Deserialization is the reverse

process where the byte stream is used to recreate the actual Java object in

memory. This mechanism is used to persist the object)

2- It should have a public no-arg constructor.

3- All properties in java bean must be private with public getters and setter
methods.

public class TestBean {
private String name;
public void setName(String name) {

this.name = name;
}
public String getName() {
return name;
}
public boolean isempty() {

return empty;
}

}

Syntax for setter methods
It should be public in nature and the return-type should be void.
The setter method should be prefixed with set.
It should take some argument i.e. it should not be no-arg method.
Syntax for getter methods

1- It should be public in nature and the return-type should not be void.

2- The getter method should be prefixed with get.

3- It should not take any argument.

4- For Boolean properties getter method name can be prefixed with either

“get” or “is”. But recommended to use “is”.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Components of JavaBeans

The classes that contained definition of beans is known as components of

JavaBeans. These classes follows certain design conventions. It includes

properties, events, methods and persistence. There are two types of

components, GUI based and non GUI based. For instance JButton is example

of a component not a class.

Properties (date members): Property is a named attribute of a bean, it

includes color, label, font, font size, display size. It determines appearance,

behavior and state of a bean.

Methods: Methods in JavaBeans are same as normal Java methods in a

class. All properties should have accessor and getter methods. Events:

Events in JavaBeans are same as SWING/AWT event handling.

Persistence: Serializable interface enables JavaBean to store its state.

Advantages of JavaBeans

1- Reusability in different environments. Can be deployed in network systems

2- Used to create applet, servlet, application or other components.

3- JavaBeans are dynamic, can be customized.

4- The properties, events, and methods of a bean can be exposed to another
application.

5- A bean may register to receive events from other objects and can generate
events that are sent to those other objects.

6- Auxiliary software can be provided to help configure a bean.

7- The configuration settings of a bean can be saved to persistent storage
and restored.

Server Side Programming

Writing programs to create dynamic pages is called server side programming

since the programs run on the web server. Server-side programming must

deal with dynamic contents and includes following operations.

The following are the different types of server side programming languages

1- Java Servlets 3- Active Server Pages (ASP)

2- Java Server Pages(JSP) 4-Hypertext Preprocessor (PHP)

Server Side Programming Performs Following Tasks

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

1. Querying the database/Operations over databases
2. Access/Write a file on server.
3. Interact with other servers.
4. Structure web applications.
5. Process user input.

Advantages of Server Side Programs

Some of the advantages of Server Side programs are as follows:

1- All programs reside in one machine called server machine. Any number

of remote machines (called client machines) can access the server

programs.

2- New functionalities to existing programs can be added at the server side

which the clients can take advantage of without having to change

anything.

3- Migrating to newer versions, architectures, design patterns, switching to

new databases can be done at the server side without having to bother

about client's hardware or software capabilities.

4- Issues relating to enterprise applications like resource management,

concurrency, session management, security and performance are

managed by the server side applications.

5- They are portable and possess the capability to generate dynamic and

user-based content (e.g., displaying transaction information of credit

card or debit card depending on user's choice).

Servlet

Servlet is a Single Instance and Multiple threads principle base server

side technology to develop server side components (A reusable java object

is called as java “component”) as web resource programs of web

applications.

When your web server (like Apache) gets a request for a servlet from the

client, the server hands over the request not to the servlet itself, but to the

servlet container in which servlet is deployed. The servlet container then

directs the request to the appropriate servlet.

The servlet does its processing which may include interacting with

the database or other server side components such as servlets or JSPs

(Java Server Pages). After the request is processed by servlet, the response

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

(generally in the form of HTML Document) is returned back to the servlet

container which in turn sends the response back to the client via the web

server.

 TCP/IP Network HTTP Server

Web Client

Request Message

 HTML Pages &

Client Side

Forms

Programs

 Request Message

 Server side

 Programs

Database

Applications /

Web Services

Servlets are generally used for

1- Processing and storing data submitted using HTML form by the user such
as purchase order or a credit card data.

2- Providing dynamic contents on web pages (Returning the results of a
database query to the client).

3- Allowing collaboration between people. A servlet can handle multiple
requests concurrently (Servlet can synchronize requests to support
systems such as online conferencing).

4- Forwarding requests to other servers and servlets to balance load among
several servers that have the same contents.

5- Managing state information on the top of the stateless HTTP e.g. for an
online shopping cart system which manages shopping carts from many
concurrent customers and maps every request to the right customer.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Servlet Life Cycle

A servlet life cycle can be defined as the entire process from its creation till

the destruction. The following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.


 The servlet calls service() method to process a client's request.


 The servlet is terminated by calling the destroy() method.


 Finally, servlet is garbage collected by the garbage collector of the

JVM.

The init() Method

The init method is called only once. It is called only when the servlet is

created, and not called for any user requests afterwards. So, it is used for

one-time initializations

Start

Loading and Instantiation

Init()

Initialized and Ready for

Service

End of

 Request

Service() Thread

Handle Request

End End of

Life Cycle

Fig: Servlet Life Cycle Flow Chart

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

The service() Method

The service() method is the main method to perform the actual task. The

servlet container (i.e. web server) calls the service() method to handle

requests coming from the client (web browsers) and response back to the

client.

Each time the server receives a request for a servlet, the server creates a

new thread and calls service. The service() method checks the HTTP request

type (GET, POST) and calls doGet, doPost methods as appropriate.

The destroy() Method

The destroy() method is called only once at the end of the life cycle of a

servlet. This method used to close database connections, halt background

threads, write cookie lists and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage

collection.

Http Servlet Example

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyExamServlet extends
HttpServlet {

private String message;

public void init() throws
ServletException {

message = "UBTER Semester Exam 2019";

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<h1>" + message + "</h1>");

}

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

public void destroy() {

// do nothing.

}

}

GET & POST Request

HTTP Protocol make request for resource using GET and POST methods. HTTP
POST requests supply additional data from the client to the server in the
message body in secure way whereas GET request supply data in URL in
efficient way. Servlet Handles GET and POST request using its doGet() and
doPost() methods.

The GET Method

GET is used to request data from a specified resource. GET is one of the most
common HTTP methods. Note that the query string (name/value pairs) is sent
in the URL of a GET request:

../LeExamTest/RegForm ? name=Ram & Add=DDN

1. GET requests can be cached
2. GET requests remain in the browser history
3. GET requests can be bookmarked
4. GET requests should never be used when dealing with sensitive data
5. GET requests have length restrictions
6. GET requests is only used to request data (not modify)

The POST Method

POST is used to send data to a server to create/update a resource. POST is
one of the most common HTTP methods. The data sent to the server with
POST is stored in the request body of the HTTP request:

POST /test/RegForm.jsp HTTP/1.1

Host : localhost:8080

name1=value1&name2=value2

1. POST requests are never cached
2. POST requests do not remain in the browser history
3. POST requests cannot be bookmarked
4. POST requests have no restrictions on data length

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Methods doGet() versus doPost() Methods

doGet() Method doPost() Method

Method doGet is called when a HTTP Method doPost is called is when a

GET request is made. doGet() is HTTP POST request is made.

called when users click on a link, or doGet() is called when

enter a URL.

It also happens with some HTML This also happens with HTML FORMs

FORMs (those with METHOD=”GET” (those with METHOD=”POST”

specified in the FORM tag). specified in the FORM tag).

In doGet Method the parameters are In doPost method , form data is sent

appended to the URL and sent along in separate line in the body.

with header information.

Maximum size of data that can be Data that can be sent is not limited.

sent is limited. Parameters sent are Parameters are sent in encrypted

not encrypted. form.

doGet is faster if we set the doPost is slower compared to doGet

response content length since the since doPost does not write the

same connection is used. content response length.

 POST Request cannot be

GET Request can be cached, can be bookmarked, No restriction on length

bookmarked, have restriction on of data, never cached, and not retain

length of data, and can be retain in in the browser history.

the browser history.

 Binary data also allowed.

Only ASCII data is allowed.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Configuration of Tomcat Server

1- Configure Java_Home and User for the Tomcat- Open the startup.bat
file located in the bin folder of the Tomcat.

set JAVA_HOME="C:\DevPrograms\Java\jdk1.8.0_144"

2- Configure the users that are allowed to use Tomcat. Open the tomcat-
users.xml file

Tomcat have defined the following four roles in advance:

1- manager-gui - allows access to the HTML GUI and the status
pages

2- manager-script - allows access to the text interface and the
status pages

3- manager-jmx - allows access to the JMX proxy and the status
pages

4- manager-status - allows access to the status pages only

User can have one or more roles. Now I will declare a user named "
tomcat" and having 4 above roles.

<role rolename="manager-gui"/>

<role rolename="manager-script"/>

<role rolename="manager-jmx"/>

<role rolename="manager-status"/>

<user username="gplohaghat" password="mypassword"

roles="manager-gui, manager-script, manager-jmx, manager-

status"/>

3- Run the Tomcat- To run the Tomcat double-click on startup.bat in the
bin folder of the Tomcat.

4- In the browser, visit the address: http://localhost:8080/

5- Click on Manager App Button and Input User Name and Password and

click on Login Button Or visit the address:

http://localhost:8080/Manager/html.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

6- Deploy the application onto the Tomcat- First of all, Create an

Application MyWebApp and deploy it onto the Tomcat by Setting

following fields under Deploy Section and then Click on Deploy Button.

Context Path(Require) :

WAR or Directory URL :

/MyWebApp

C:/MyApps/MyWebApp.war

7- Run the demo application- In the browser, visit the address:

http://localhost:8080/ MyWebApp.

8- Open the server.xml file located in config folder and Change Port 8080

to 80 and Timeout to 12000.

<Connector port = “80” protocol = “HTTP/1.1”

connectionTimeout = “120000” redirectPort = “8443”>

9- Sometimes during deployment an application onto the Tomcat, but UTF-

8 doesn't work. You can configure the UTF-8 as the default charset for

the Tomcat.

set JAVA_OPTS=-Djavax.servlet.request.encoding=UTF-8 -
Dfile.encoding=UTF-8

CGI versus Servlet

The Common Gateway Interface (CGI) is the first technology used to

generate dynamic contents. It allows a web client to pass data to the

application running on the web server so that a dynamic web page can be

returned to the client according to the input data.

CGI is not a programming language, rather it is an interface (or a set of

rules) that allows an input from a web browser and produce an output in the

form of HTML page. A CGI script can be written in a verity of languages such

as C, C++, Visual Basic, Perl, FORTRAN and even Java. Out of these, Perl is

most commonly used.

When a web server receives a request for a CGI script, the web server passes

some parameters to this script and executes it. The script runs and generates

some output which is then collected by the web server and returned to the

client (browser).

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Advantages of CGI

1. CGI is a true cross-platform technology. This means that CGI scripts work

with any web browser as well as with most web servers running on Windows

and Unix.

2. CGI is language independent. It can be written in a variety of languages
so developers do not have to learn a new language.

3. CGI is very simple interface. It is not necessary to have any special
libraries to create a CGI program or write programs using a particular API.

Disadvantages of CGI

1. A new process is started for each client request. The creation of the

process for every such request requires time and significant server resources

which limits the number of requests a server can handle.

2. CGI program cannot interact with the web server or take advantage of

the server's abilities once it begins execution. This is because it is running in

a separate process. For example, a CGI script cannot write to the server's

log file.

Difference between SERVLET and CGI

Both Java servlets and CGI are used for creating dynamic web applications

that accept a user request, process it on the server side and return responses

to the user. However, Java servlets provide a number of advantages over

traditional CGI which are as follows,

Efficient: Unlike traditional CGI where a new process is started for each

client request, a servlet processes each request as a thread inside of a

process.

CGI program which terminates after handling a request, the servlets remains

in memory thus servlets make it easier to cache computations, keep

database connections open.

Powerful: Servlets support several capabilities that are difficult or

impossible to accomplish with traditional CGI. These capabilities include

talking directly to the web server, sharing data between multiple servlets,

session tracking and caching of previous computations.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Portable: Since servlets are written in the Java programming language and

follow a standard API, so a servlet can be moved from one servlet compatible

web server to another very easily.

Inexpensive: A number of free or very inexpensive web servers are

available these days. Once you have a web server, adding servlet support to

it costs very little.

Language dependency: Since servlets can be written only in Java so they

are language dependent. On the other hand, CGI programs can be written

in any programming language like C, C++, Perl.

Secure: Servlet can be run by a servlet engine or servlet container which

increases the server security. On the other hand, CGI scripts are significantly

less secure.

Convenient: Servlets have an extensive infrastructure for automatically

parsing and decoding HTML form data, reading and setting HTTP headers,

handling cookies, session handling etc. On the other hand, CGI does not

support such infrastructure.

Type of Servlets

There is a possibility of developing ‘n’ types of servlets, like httpservlet,

ftpservlet, smtpservlet etc. for all these protocol specific servlet classes

GenericServlet is the common super class containing common properties and

logics. So, GenericServlet is not a separate type of servlet.

Generic Servlet

Http Servlet FTP Servlet SMTP Servlet

Generic servlets extend javax.servlet.GenericServlet- It is protocol

independent servlet. Generic Servlet is a base class servlet from which all

other Servlets are derived. Generic Servlet supports for HTTP, FTP and SMTP

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

protocols. It implements the Servlet and ServletConfig interface. It has only
init() and destroy() method of ServletConfig interface in its life cycle.

HTTP servlets extend javax.servlet.HttpServlet- HTTPServlet is HTTP

dependent servlet. The HTTP protocol is a set of rules that allows Web

browsers and servers to communicate. When Web browsers and servers

support the HTTP protocol, Java-based web applications are dependent on

HTTP Servlets.HttpServlet is Extended by Generic Servlet.

HttpServlet Supports Following HTTP Methods

1- GET 5- POST

2- PUT 6- HEAD

3- DELETE 7- PATCH

4- OPTIONS

HttpServlet

HttpServlet is an abstract class given under the servlet-api present. It is

present in javax.servlet.http package and has no abstract methods. It extends

GenericServlet class.

When the servlet container uses HTTP protocol to send request, then it creates

HttpServletRequest and HttpServletResponse objects. HttpServletRequest

binds the request information like header and request methods and

HttpServletResponse binds all information of HTTP protocol.

Methods in HttpServlet: The methods in httpservlet are given as follows:

protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle

a GET request. The HTTP GET method allows the client to send limited size of

data.

protected void doPost(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle

a POST request. The HTTP POST method allows the client to send data of

unlimited length to the Web server a single time and is useful when posting

information such as credit card numbers.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

protected void doDelete (HttpServletRequest req,
HttpServletResponse resp) throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle

a DELETE request. The DELETE operation allows a client to remove a document

or web page from the server.

protected void service(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException

Receives standard HTTP requests from the public service method and

dispatches them to the doXXX methods defined in this class. This method is

an HTTP specific version of the service method. There's no need to override

this method.

public void service (ServletRequest req/ ServletRespon,se res)
throws ServletException, IOException

Dispatches client request to the protected service method. There's no
need to override this method.

protected long getLastModified (HttpServletRequest req)

Returns the time the HttpServletRequest object was last modified, in
milliseconds.

Servlet Container/Web container

Servlet container (also known as a Web container) is a software or software

application that Servlet container takes care of servlet program life cycle

(Object birth to death) of given resource (like java classes) and generates

dynamic web pages. So servlet container is the essential part of the web

server that interacts with the java servlets and communicates between client

Browsers and the servlets.

There are a lot of Servlet Containers like Jboss, Apache Tomcat, WebLogic etc.

How does this Servlet Container work?

1- A client browser accesses a Web server or HTTP server for a page.

2- The Web server redirects the request to the servlet container (Servlets are

HTTP listeners that run inside the servlet container) and the servlet

container redirects the request to the appropriate servlet.

3- The servlet is dynamically retrieved and loaded into the address space of
the container, if it is not in the container.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

4- The servlet container invokes servlet init () method once when the servlet
is loaded first time for initialization.

5- The servlet container invokes the service () methods of the servlet to

process the HTTP request, i.e., read data in the request and formulate a

response. The servlet remains in the container's address space and can

process other HTTP requests.

6- Web servlet generates data (HTML page, picture ...) return the dynamically
generated results to the correct location.

Responsibilities of Web Server

1- Listens to client request continuously (HTTP Request) and passes the HTTP

request to an appropriate web resource program of web application

(deployed web application).

2- Provides container software to execute server side programs (web

resource programs) and gathers output generated by web resource

programs.

3- Passes output of web resource programs to browser window as http
response in the form of web page.

4- Provide environment to deploy manage and to undeploy the web
application.

How many ways we can develop a servlet?

The three important resources of servlet API.

1. javax.servlet.Servlet

2. javax.servlet.GenericServlet (Abstract class)

3. javax.servlet.http.httpServlet (Abstract class)

Every servlet program is a java class that is developed based on servlet api.

There are three ways to develop servlet program.

1. Take a java class implementing javax.servlet.Servlet interface and
provide implementation for all the five methods of that interface.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

2. Take java class extending from javax.servlet.GenericServlet class and
provide implementation for service() method.

3. Take java class extending from javax.servlet.http.httpServlet class and

override one of the seven doxxx() methods or one of the two service(- -)

methods.

In the above said three approaches the programmer overrides the service()

and doXXX(-) methods and places request processing logic inside method

body that generates web pages by processing the request. But programmer

never calls these methods manually but Servlet container calls these methods

automatically for every request given by client to servlet program.

Programmer just supplies his servlet program and related java class to servlet

container then onwards servlet container is responsible to manage the whole

life cycle of servlet program. Servlet program uses request object to read

details from the request and response object to send response content to

browser window through web server.

For Example when 10 requests are given to a servlet program from single or

different browser windows (clients) then Servlet container creates 10 threads

on servlet program objects representing 10 requests. Servlet container

creates 10 sets of request, response objects and calls service (-,-) or methods

for 10 times having request, response objects as arguments values.

Handling Http Request & Responses

GET Method Example using URL:- Here is a simple URL which will pass two
values to RegistrationForm program using GET method.

http://localhost:8080/RegistrationForm?first_name = UBTER &
last_name = ROORKEE

Given below is the RegistrationForm.java servlet program to handle input

given by web browser. We are going to use getParameter() method which

makes it very easy to access passed information −

import java.io.*;

import javax.servlet.*;

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

import javax.servlet.http.*;

public class RegistrationForm extends HttpServlet
{ public void doGet(HttpServletRequest request,

HttpServletResponse response) throws
ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "GET Method to Read Form Data";

String docType = "<!doctype html public \"-//w3c//dtd html

4.0 " + "transitional//en\">\n";

out.println(docType + "<html>\n" +

"<head><title>" + title + "</title></head>\n"

+ "<body bgcolor = \"#f0f5e7\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n"
+ "\n" +

" First Name: "

+ request.getParameter("first_name") + "\n" +
" Last Name: "

+ request.getParameter("last_name") + "\n" +
"\n" +

"</body>" + "</html>");

}

}

GET Method Example Using Form: Here is a simple example which passes

two values using HTML FORM and submit button. We are going to use same

Servlet HelloForm to handle this input.

<html>

<body>

<form action = "RegistrationForm" method = "GET">

First Name: <input type = "text" name =

"first_name">

Last Name: <input type = "text" name = "last_name"
/> <input type = "submit" value = "Submit" />

</form>

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

</body>

</html>

Keep this HTML in a file Registration.htm and put it in <Tomcat-

installationdirectory>/webapps/ROOT directory. When you would access

http://localhost:8080/ Registration.htm, here is the actual output of the

above form.

Registration Form

First Name

Last Name

Submit

Enter First Name and Last Name and then click submit button to see the result

on your local machine where tomcat is running. Based on the input provided,

it will generate similar result as mentioned in the above example.

POST Method Example Using Form:- Let us do little modification in the above

servlet, so that it can handle GET as well as POST methods. Below is

HelloForm.java servlet program to handle input given by web browser using

GET or POST methods.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class RegistrationForm extends HttpServlet
{ public void doGet(HttpServletRequest request,

HttpServletResponse response) throws
ServletException, IOException {

Government Polytechnic Lohaghat (Champawat)

(Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "GET Method to Read Form Data";

String docType = "<!doctype html public \"-//w3c//dtd html

4.0 " + "transitional//en\">\n";

out.println(docType + "<html>\n" +

"<head><title>" + title + "</title></head>\n"

+ "<body bgcolor = \"#f0f5e7\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n"
+ "\n" +

" First Name: "

+ request.getParameter("first_name") + "\n" +
" Last Name: "

+ request.getParameter("last_name") + "\n" +
"\n" +

"</body>" + "</html>");

// Method to handle POST method request.

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws
ServletException, IOException {

doGet(request, response); //Call doGet Method

}

}

Now compile and deploy the above Servlet and test it using
RegistrationForm.htm with the POST method as follows −

<html><body>

<form action = "RegistrationForm" method = "POST">

First Name: <input type = "text" name =

"first_name">

Last Name: <input type = "text" name = "last_name"
/> <input type = "submit" value = "Submit" />

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

</form>

</body></html>

Keep this HTML in a file Registration.htm and put it in <Tomcat-
installationdirectory>/webapps/ROOT directory.

Registration Form

First Name

Last Name

Submit

When you would access http://localhost:8080/ Registration.htm, here is the

actual output of the above form. Enter First Name and Last Name and then

click submit button to see the result on your local machine where tomcat is

running.

Passing Checkbox Data to Servlet Program:-Checkboxes are used when

more than one option is required to be selected. Here is example HTML code,

Courses.htm, for a form with two checkboxes

<html>

<body>

<form action = " Courses" method = "POST" target =
"_blank"> <input type = "checkbox" name = "Servlet"

checked = "checked" /> Servlet

<input type = "checkbox" name = "C++" /> C++
<input type = "checkbox" name = "JSP"

checked = "checked" /> JSP

<input type = "submit" value = "Select Course" />
</form>

</body>

</html>

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

The result of this HTML code is the following HTML form.

Courses

Servlet C++ JSP

Submit

Given below is the Courses.java servlet program to handle input given by
web browser for checkbox button.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Courses extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Reading Checkbox Data";

String docType = "<!doctype html public \"-//w3c//dtd html

4.0 " + "transitional//en\">\n";

out.println(docType + "<html>\n" +

"<head> <title>" + title + "</title></head>\n" +
"<body bgcolor = \"#fdf2f3\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n"
+ "\n" + "Course1 : : "

+ request.getParameter("Servlet") + "\n" +
" Course2: : "

+ request.getParameter("C++") + "\n"
+ " Course3: : "

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

+ request.getParameter("JSP") + "\n" +

"\n" +

"</body>" + "</html>");

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

}

}

For the above example, it would display following result −

Servlet : on

C++ : null

JSP : on

Setting Cookies with Servlet

Setting cookies with servlet involves three steps −

(1) Creating a Cookie object − You call the Cookie constructor with a cookie
name and a cookie value, both of which are strings.

Cookie cookie = new Cookie("key","value");

Keep in mind, neither the name nor the value should contain white space or

any of the following characters −

[]()=,"/?@:;

(2) Setting the maximum age − You use setMaxAge to specify how long (in

seconds) the cookie should be valid. Following would set up a cookie for 24

hours.

cookie.setMaxAge(60 * 60 * 24);

(3) Sending the Cookie into the HTTP response headers − You use

response.addCookie(-) to add cookies in the HTTP response header as follows

−

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

response.addCookie(cookie);

Example

Let us modify our Form Example to set the cookies for first and last name.

// Import required java
libraries import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class StoreCookies extends HttpServlet
{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Create cookies for first and last names.

FName = request.getParameter("first_name");

LName = request.getParameter("last_name");

Cookie firstName = new Cookie("first_name", FName);

Cookie lastName = new Cookie("last_name", LName);

// Set expiry date after 24 Hrs for both the

cookies. firstName.setMaxAge(60*60*24);

lastName.setMaxAge(60*60*24);

// Add both the cookies in the response header.

response.addCookie(firstName);

response.addCookie(lastName);

// Set response content type

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Setting Cookies Example";
out.println("<html><head><title>" + title +

"</title> + “</head>\n" +

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

"<body bgcolor = \"#f0f0f0\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n"
+ "\n" +

" First Name: "

+ request.getParameter("first_name") + "\n" +
" Last Name: "

+ request.getParameter("last_name") + "\n" +
"\n" + "</body></html>");

}

}

Compile the above servlet HelloForm and create appropriate entry in web.xml
file and finally try following HTML page to call servlet.

<html> <body>

<form action = "StoreCookies" method = "GET">

First Name: <input type = "text" name =
"first_name">

Last Name: <input type = "text" name = "last_name"
/> <input type = "submit" value = "Submit" />

</form>

</body> </html>

Keep above HTML content in a file Hello.htm and put it in <Tomcat-

installationdirectory>/webapps/ROOT directory. When you would access

http://localhost:8080/Hello.htm.

Try to enter First Name and Last Name and then click submit button. This

would display first name and last name on your screen and same time it would

set two cookies firstName and lastName which would be passed back to the

server when next time you would press Submit button.

Next section would explain you how you would access these cookies back in
your web application.

Reading Cookies with Servlet:

To read cookies, you need to create an array of javax.servlet.http.Cookie

objects by calling the getCookies() method of HttpServletRequest. Then cycle

through the array, and use getName() and getValue() methods to access each

cookie and associated value.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Example

Let us read cookies which we have set in previous example −

// Import required java
libraries import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class ReadCookies extends HttpServlet
{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

Cookie cookie = null;

Cookie[] cookies = request.getCookies();

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Reading Cookies Example";

out.println("<html> \n <head> \n <title>" + title +
"</title> \n </head>\n" +

"<body bgcolor = \"#fdf6e7\">\n");

if(cookies != null) {

out.println("<h2> Found Cookies</h2>");

for (int i = 0; i < cookies.length; i++) {

cookie = cookies[i];

out.print("Name:"+cookie.getName() + ", ");

out.print("Value:"+cookie.getValue() +"
");

}

}

else

out.println("<h2>No cookies founds</h2>");

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

out.println("</body>");

out.println("</html>");

}

}

Compile above servlet ReadCookies and create appropriate entry in web.xml

file. If you would have set first_name cookie as "Lohaghat" and last_name

cookie as "Champawat" then running http://localhost:8080/ReadCookies

would display the following result-

Found Cookies

Name : first_name, Value: Lohaghat

Name : last_name, Value: Champawat

Delete Cookies with Servlet

To delete cookies is very simple. If you want to delete a cookie then you simply
need to follow up following three steps −

1- Read an already existing cookie and store it in Cookie object.

2- Set cookie age as zero using setMaxAge() method to delete an existing
cookie

3- Add this cookie back into response header.

Example

The following example would delete and existing cookie named "first_name"

and when you would run ReadCookies servlet next time it would return null

value for first_name.

// Import required java
libraries import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class DeleteCookies extends
HttpServlet {

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Cookie cookie = null; Cookie[] cookies = null;

cookies = request.getCookies();

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Delete Cookies";

out.println("<html>\n" +

"<head><title>" + title + "</title></head>\n"
+ "<body bgcolor = \"#f0f0f0\">\n");

if(cookies != null) {

out.println("<h2> Cookies

Value</h2>"); for (int i = 0; i <

cookies.length; i++) {

cookie = cookies[i]

string cookieName = cookie.getName();

if(cookieName.compareTo("first_name") == 0)

{

cookie.setMaxAge(0);

response.addCookie(cookie);

out.print("Deleted Cookie:");

out.print("cookie.getName());

out.print("
");

}

out.print("Name : " + cookie.getName() + ", ");

out.print("Value: " + cookie.getValue() + "
");

}

}

else

out.println("<h2>No cookies founds</h2>");

out.println("</body>");

out.println("</html>");

}

}

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Compile above servlet DeleteCookies and create appropriate entry in web.xml

file. Now running http://localhost:8080/DeleteCookies would display the

following result −

Cookies Value

Deleted cookie : first_name

Name : first_name, Value: Lohaghat

Name : last_name, Value: Champawat

Now try to run http://localhost:8080/ReadCookies and it would display only
one cookie as follows –

Cookies Value

Name : last_name, Value: Champawat

Session Tracking in Servlet

Session Tracking is a way to maintain state (data) of an user. It is also known

as session management in Servlet. Http protocol is a stateless so we need to

maintain state using session tracking techniques. Each time user requests to

the server, server treats the request as the new request. So we need to

maintain the state of an user to recognize to particular user.

Client
3- Request (New) Server

 2- Response

 1- Request (New)

There are four techniques used in Session tracking:

1- Cookies

2- Hidden Form Field

3- URL Rewriting

4- HttpSession

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple

client requests. A cookie has a name, a single value, and optional attributes

such as a comment, path and domain qualifiers, a maximum age, and a

version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique,

we add cookie with response from the servlet. So cookie is stored in the cache

of the browser. After that if request is sent by the user, cookie is added with

request by default. Thus, we recognize the user as the old user.

Client

3- Request + Cookie

Server

 2- Response + Cookie

1- Request

There are 2 types of cookies in Servlets Persistent and Non-Persistent.

1- Non-persistent cookie: It is valid for single session only. It is removed
each time when user closes the browser.

2- Persistent cookie:- It is valid for multiple session . It is not removed

each time when user closes the browser. It is removed only if user logout

or signout or age of Cookie is expired.

Advantage of Cookies

1- Simplest technique of maintaining the state.

2- Cookies are maintained at client side.

Disadvantage of Cookies

1- It will not work if cookie is disabled from the browser.

2- Only textual information can be set in Cookie object.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Hidden Form Field

Hidden Form Field is a hidden (invisible) textfield that is used for maintaining

the state of a user. In such case, we store the information in the hidden field

and get it from another servlet. This approach is better if we have to submit

form in all the pages (Every page is a form and have hidden form field) and

we don't want to depend on the browser.

Let's see the code to store value in hidden field. Here, uname is the hidden
field name and GP Lohaghat is the hidden field value.

<input type="hidden" name="uname" value="GP Lohaghat">

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page

id or page name in the hidden field so that each page can be uniquely

identified.

Advantage: It will always work whether cookie is disabled or not.
Disadvantages

1. It is maintained at server side.
2. Extra form submission is required on each pages.
3. Only textual information can be used.

Examples

User Form

Name Polytechnic

Submit

FirstServlet

Hello, Polytechnic

GP Lohaghat

Submit

SecondServlet

Hello, GP Lohaghat

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Code: HTML Form

<form action="FirstServlet">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

Code:- FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

try{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uName=request.getParameter("userName");

out.print("Welcome "+n);

out.print("<form action= ‘SecondServlet’>");

out.print("<input type=’hidden’ “ +

name=’uname’ value='"+ uName +"'>");

out.print("<input type='submit' value='go'>");

out.print("</form>");

out.close();

}

catch(Exception e) {

System.out.println(e);

}

}

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Code:- SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends
HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

try

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String n=request.getParameter("uname");

out.print("Hello "+n);

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet

or the next resource. We can send parameter name/value pairs using the

following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter

name/value pair is separated from another parameter using the

ampersand(&). When the user clicks the hyperlink, the parameter name/value

pairs will be passed to the server. From a Servlet, we can use getParameter()

method to obtain a parameter value.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Advantage of URL Rewriting

1- It will always work whether cookie is disabled or not (browser
independent).

2- Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

1- It will work only with links.

2- It can send Only textual information.

Example

FirstServlet

User Form

Name:

Welcome, Polytechnic

 Polytechnic

 Submit
Visit Next

Page

SecondServlet

Hello, Polytechnic

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Code:- UserForm.html

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/> </form>

Code:- FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

{

try

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uName =request.getParameter("userName");
out.print("Welcome "+ uName);

out.print("”);
out.print("Visit Next Page ");

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

Code:- SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

try

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

//getting value from the query string

String userName=request.getParameter("userName");

out.print("Hello "+ userName); out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

HttpSession interface

In such case, container creates a session id for each user.The container uses

this id to identify the particular user.An object of HttpSession can be used to

perform two tasks:

1- Bind objects

2- View and manipulate information about a session, such as the session
identifier, creation time, and last accessed time.

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

How to get the HttpSession object?

The HttpServletRequest interface provides two methods to get the object of

HttpSession:

public HttpSession getSession():Returns the current session associated
with this request, or if the request does not have a session, creates one.

public HttpSession getSession(boolean create):Returns the current

HttpSession associated with this request or, if there is no current session and

create is true, returns a new session.

Commonly used methods of HttpSession interface

1- public String getId():Returns a string containing the unique identifier
value.

2- public long getCreationTime():Returns the time when this session was

created, measured in milliseconds since midnight January 1, 1970 GMT.

3- public long getLastAccessedTime():Returns the last time the client

sent a request associated with this session, as the number of milliseconds

since midnight January 1, 1970 GMT.

4- public void invalidate():Invalidates this session then unbinds any
objects bound to it.

Example

Code: UserForm.html

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/> </form>

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

User Form

Nam Polytechni

Submit

SecondServlet

FirstServlet

Welcome, Polytechnic

Visit Next Page

Hello, Polytechnic

Code: FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response){

try

{

response.setContentType("text/html");

Government Polytechnic Narendra Nagar(T.G)

 (Branch - Information Technology)

Subject: Web Programming using Servlets & JSP

PrintWriter out = response.getWriter();

String userName =request.getParameter("userName");

out.print("Welcome " + userName);

HttpSession session=request.getSession();
session.setAttribute("uname", userName);

out.print("Visit Next Page ");

out.close();

}catch(Exception e){System.out.println(e);}

}

}

Code: SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet
{ public void doGet(HttpServletRequest request,

HttpServletResponse response)

try{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

HttpSession session=request.getSession(false);

String username = (String)session.getAttribute("uname");

out.print("Hello "+ username);

out.close();

}catch(Exception e){System.out.println(e);}

}

}

