UNIT -3 ### Oscilloscopes ### Introduction: In studying the various electronic, electrical networks and systems, signals which are functions of time, are often encountered. Such signals may be periodic or non periodic in nature. The device which allows, the amplitude of such signals, to be displayed primarily as "function of time, is called cathode ray oscilloscope, commonly known as C.R.O. The CR.O gives the visual representation of the time varying signals. The oscilloscope has become an universal instrument and is probably most versatile tool for the development of electronic circuits and systems. It is an integral part of electronic laboratories. The oscilloscope is, in fact, a voltmeter. Instead of the mechanical deflection of a metallic pointer as used in the normal voltmeters, the oscilloscope uses the movement of an electron beam against a fluorescent screen, which produces the movement of a visible spot. The movement of such spot on the screen is proportional to the varying magnitude of the signal, which is under measurement. #### Basic Principle: The electron beam can be deflected in two directions: the horizontal or x-direction and the vertical or y-direction. Thus an electron beam producing a spot can be used to produce two dimensional displays, Thus CRO. can be regarded as a fast x-y plotter. The x-axis and y-axis can be used to study the variation of one voltage as a function of another. Typically the x-axis of the oscilloscope represents the time while the y-axis represents variation of the input voltage signal. Thus If bhe input voltage signal applied to the y-axis of CRO. Is sinusoidally varying and if x-axis represents the time axis, then the spot moves sinusoidally, and the familiar sinusoidal waveform can be seen on the screen of the oscilloscope. The oscilloscope is so fast device that it can display the periodic signals whose time period is as small as microseconds and even nanoseconds. The CRO. Basically operates on voltages, but it is possible to convert current, pressure, strain, acceleration and other physical quantities into the voltage using transducers and obtain their visual representations on the CRO. ## Cathode Ray Tube (CRT): The cathode ray tube (CRT) is the heart of the CR.O. the CRT generates the electron beam, accelerates the beam, deflects the beam and also has a screen where beam becomes visible, as a spot. The main parts of the CRT are: - i) Electron gun ii) Deflection system iii) Fluorescent screen - iv) Glass tube or envelope v) Base A schematic diagram of CRT, showing its structure and main components is shown in the Fig. ### Electron Gun: The electron gun section of the cathode ray tube provides a sharply focused electron beam directed :towards the fluorescent-coated screen. This section starts from theql1ally heated cathode, limiting the electrons. The control grid is give!! negative potential with respect to cathode dc. This grid controls the number of electrons in the beam, going to the screen. The momentum of the electrons (their number x their speed) determines the intensity, or brightness, of the light emitted from the fluorescent screen due to the electron bombclrdllent. The light emitted is usually of the green colour. Because the electrons are negatively charged, a repulsive force is created by applying a negative voltage to the control grid (in CRT, voltages applied to various grids are stated with respect to cathode, which is taken as common point). This negative control voltage can be made variable. #### **Deflection System:** When the electron beam is accelerated it passes through the deflection system, with which beam can be positioned anywhere on the screen. The deflection system of the cathode-ray-tube consists of two pairs of parallel plates, referred to as the vertical and horizontal deflection plates. One of the plates' in each set is connected to ground (0 V), To the other plate of each set, the external deflection voltage is applied through an internal adjustable gain amplifier stage, To apply the deflection voltage externally, an external terminal, called the Y input or the X input, is available. As shown in the Fig. , the electron beam passes through these plates. A positive voltage applied to the Y input terminal (Vy) Causes the beam to deflect vertically upward due to the attraction forces, while a negative voltage applied to. the Y input terminal will cause the electron beam to deflect vertically downward, due to the repulsion forces. When the voltages are applied simultaneously to vertical and horizontcl1 deflecting plates, the electron beam is deflected due to the resultant-of these two voltages. ### Fluorescent Screen: The light produced by the screen does not disappear immediately when bombardment by electrons ceases, i.e., when the signal becomes zero. The time period for which the trace remains on the screen after the signal becomes zero is known as "persistence". The persistence may be *jS* short as a few microsecond, or as long as tens of seconds and minutes. Long persistence traces are used in the study.. of transients. Long persistence helps in the study of transients since the trace is still seen on the screen after the transient has disappeared. ## Phosphor screen characteristics: Many phosphor materials having different excitation times and colours as well as different phosphorescence times are available. The type PI, P2, PI1 or P3I are the short persistence phosphors and are used for the general purpose oscilloscope Medical oscilloscopes require a longer phosphor decay and hence phosphors like P7 and P39 are preferred for such applications. Very slow displays like radar require long persistence phosphors to maintain sufficient flicker free picture. Such phosphors are P19, P26 and, P33. The phosphors P19, P26, P33 have low burn resistance. The phosphors PI, P2, P4, P7, PII have medium burn resistance while PIS, P3I have high burn resistance. ## Block diagram of simple oscilloscope: CRT: This is the cathode ray tube which is the heart of CR.O. It is' used to emit the riectrons required to strike the phosphor screen to produce the spot for the visual display of the signals. # Vertical Amplifier: The input signals are generally not strong to provide the measurable deflection on the screen. Hence the vertical amplifier, stage is used Jo amplify the input signals. The amplifier stages used are generally wide band amplifiers so as to pass faithfully the entire band of frequencies to be measured. Similarly it contains the attenuator stages as well. The attenuators are used when very high voltage signals are to be examined, to bring the signals within the proper range of operation. It consists of several stages with overall fixed sensitivity. The amplifier can be designed for stability and required bandwidth very easily due to the fixed gain. The input stage colrtsists of an attenuator followed by FET source follower. It has vel' high input impedance required to isolate the amplifier from the attenuator. It is followed by BJT emitter follower to match the output impedance of FET output With input of phase inverter. The phase inverter provides two antiphase output signals which are required to operate the push pull output amplifier. The push pull operation has advantages like better hum voltage cancellation, even harmonic suppression especially large 2nd harmonic, greater power output per tube and reduced number of defocusing and nonlinear effects. Delay line: The delay line is used to delay the signal for some time in the verticCII sections. When the delay line is not used, the part of the signal gets lost. Thus the input signal is not applied directly to the vertical plates but is delClyed by some time using a delay line cu-cuit as shown in the Fig. If the trigger pulse is picked off at a time t = to after the signal has passed through the main amplifier then signal is delayed by XI nanoseconds while sweep takes YI nanoseconds to reach. The design of delay line is such that the delay time XI is higher than the time YI' Generally XI is 200. nsec while tl;1.eYl is 80 ns, thus the sweep starts well in time and no part of the signal is lost. There are two types of delay lines used in CR.O. which are: - i) Lumped parameter delay line - ii) Distributed parameter delay line It is necessary that horizontal deflection starts at the same point of the input vertical signal, each time it sweeps. Hence to synchronize horizontal deflection with vertical deflection a synchronizing or triggering circuit is used. It converts the incoming signal into the triggering pulses, which are used for the synchronization. #### Time base generator: The time base generator is used to generate the sawtooth voltage, required to deflect the beam in the horizontal section. This voltage deflects the spot at a constant time dependent rate. Thus the x-axis' on the screen can be represented as time, which, helps to display and analyse the time varying signals. #### Oscilloscope probes Oscilloscopes are widely used for test and repair of electronics equipment of all types. However it is necessary to have a method of connecting the input of the oscilloscope to the point on the equipment under test that needs monitoring. To connect the scope to the point to be monitored it is necessary to use screened cable to prevent any pick-up of unwanted signals and in addition to this the inputs to most oscilloscopes use coaxial BNC connectors. While it is possible to use an odd length of coax cable with a BNC connector on one end and open wires with crocodile / alligator clips on the other, this is not ideal and purpose made oscilloscope probes provide a far more satisfactory solution. Oscilloscope probes normally comprise a BNC connector, the coaxial cable (typically around a metre in length) and what may be termed the probe itself. This comprises a mechanical clip arrangement so that the probe can be attached to the appropriate test point, and an earth or ground clip to be attached to the appropriate ground point on the circuit under test. Care should be taken when using oscilloscope probes as they can break. Although they are robustly manufactured, any electronics laboratory will consider oscilloscope probes almost as "life'd" items that can be disposed of after a while when they are broken. Unfortunately the fact that they are clipped on to leads of equipment puts a tremendous strain on the mechanical clip arrangement. This is ultimately the part which breaks. ### X1 and X10 oscilloscope probes There are two main types of passive voltage scope probes. They are normally designated X1 and X10, although 1X and 10X are sometimes seen. The designation refers to the factor by which the impedance of the scope itelf is multiplied by the probe. The X1 probes are suitable for many low frequency applications. They offer the same input impedance of the oscilloscope which is normally 1 $M\Omega$. However for applications where better accuracy is needed and as frequencies start to rise, other test probes are needed. To enable better accuracy to be achieved higher levels of impedance are required. To achieve this attenuators are built into the end of the probe that connects with the circuit under test. The most common type of probe with a built in attenuator gives an attenuation of ten, and it is known as a X10 oscilloscope probe. The attenuation enables the impedance presented to the circuit under test to be increased by a factor of ten, and this enables more accurate measurements to be made. As the X10 probe attenuates the signal by a factor of ten, the signal entering the scope itself will be reduced. This has to be taken into account. Some oscilloscopes automatically adjust the scales according to the probe present, although not all are able to do this. It is worth checking before making a reading. ### **Special Purpose Oscilloscopes** ### **Dual Beam CRO** The dual trace oscilloscope has one cathode ray gun, and an electronic switch which switches two signals to a single vertical amplifier. The dual beam CRO uses two completely separate electron beams, two sets of VDPs and a single set of HDPs. Only one beam can be synchronised at one time, since the sweep is the same for both signals, i.e. a common time base is used for both beams. Block diagram of a Dual Beam CRO. Therefore, the signals must have the same frequency or must be relatedharmonically, in order to obtain both beams locked on the CRT screen, e.g. the input signal of an amplifier can be used as signal A and its output signal as signal ### **DUAL TRACE OSCILLOSCOPE** This CRO has a single electron gun whose electron beam is split into two by an electronic switch. There is one control for focus and another for intensity. Two signals are displayed simultaneously. The signals pass through identical vertical channels or vertical amplifiers. Each channel has its own calibrated input attenuator and i positioning control, so that the amplitude of each signal can be ndependently adjusted. A mode control switch enables the electronic switch to operate in two modes. Wheri the switch is in ALTERNATE position, the electronic switch feeds each signal alternately to the vertical amplifier. The electronic switch alternately connects the main vertical amplifier to channels A and B and adds a different dc component to each signal; this dc component directs the beam alternately to the upper or lower half of the screen. The switching takes place at the start of each new sweep of the sweep generator. The switching rate of theelectronic switch is synchronised to the sweep rate, so that the CRT spot traces the channel A signal on one sweep and the channel B signal on the succeeding sweep [Fig. 7.19 (b)] Fig. 7.19 (b) Time Relation of a Dual-Channel Vertical Amplifier in Alternate Mode The sweep trigger signal is available from channels A or B and the trigger pick-off takes place before the electronic switch. This arrangement maintains the correct phase relationship between signals A and B. When the switch is in the CHOP mode position, the electronic switch is free running at the rate of 100-500 kHz, entirely independent of the frequency of the sweep generator. The switch successively connects small segments of A and B waveforms to the main vertical amplifier at a relatively fast chopping rate of 500 kHz e.g. 1 i.ts segments of each waveform are fed to the CRT display (Fig. 7.19 (c)). If the chopping rate is slow, the continuity of the display is lost and it is better to use the alternate mode of operation. In the added mode of operation a single image can be displayed by the addition of signal from channels A and B, i.e. (A + B), etc. In the X - Y mode of operation, the sweep generator is disconnected and channel B is connected to the horizontal amplifier. Since both preamplifiers are identical and have the same delay time, accurate X - Y measurements can be made. ## Dual trace Oscilloscope(0-15MHz) #### **Block Description Y-Channels** A and B vertical channels are identical for producing the dual trace facility. Each comprises an input coupling switch, an input step attenuator, a source follower input stage with protection circuit, a pre-amplifier from which a trigger signal is derived and a combined final amplifier. The input stage protection circuit consists of a diode, which prevents damage to the FET transistors that could occur with excessive negative input potentials, and a resistor network which protects the input stage from large positive voltage swings. As the transistors are the balanced pre-amplifier stage, they share the same IC block. The resulting stabilisation provides a measure of correction to reduce the drift inherent in high gain amplifiers. The trigger pick-off signal is taken from one side of the balanced pre-amplifier to the trigger mode switch, where either channel A or channel B triggering can be selected. The supply for the output of the pre-amplifier stage is derived from a constant current source controlled by the channel switching logic. Under the control of channel switching, signals from A and B channels are switched to the final amplifier. The combined balanced final amplifier is a direct coupled one to the Y-plates of the CRT (refer to Fig. 7.20). ### Channel Switching The front panel A and B channel selection (push button or switch), controls an oscillator in the CHOP mode. For channel switching electronic switching logic and a F/F is used. When either A or B channels are selected, the F/F is switched to allow the appropriate channel. In the ALTERNATE mode, a pulse from the sweep-gating multivibrator via the electronic switching logic, switches the F/F, thus allowing A and B channels for alternate sweeps. In the CHOP mode, the oscillator is switched via the logic stage to provide rapid switching of the channels via the F/F. # Triggering A triggering signal can be obtained from the vertical amplifier of Channels A and B from an external source or internally from the mains supply (LINE triggering). The triggering signal is selected and normally fed via the amplifier stage to the pulse shaper, which supplies well defined trigger pulses to the sweep-gating multivibrator for starting the sawtooth generator. The time base generator circuit operates on the constant current integrator principle. The sweep-gating multivibrator, triggered by pulses from the differentiator and auto circuits, starts the sawtooth generator. Sweep signals are fed to the final X-amplifier. A gate pulse is supplied by the sweep-gating multivibrator for unblanking the CRT during the forward sweep. In addition this pulse is supplied to an external socket for probe adjustment via a diode network. #### X-Channel Under the control of diode switching from the TIME/DIV switch, the X- amplifier receives its input signal from either the time base sawtooth generator or from an external source (X-EXT input socket via the X and trigger pre-amplifier). The X-MAGN (x 5) circuit is incorporated in the X-final amplifier. The output of this amplifier is direct coupled to the horizontal deflection plates of the CRT. #### Cathode-Ray Tube Circuit and Power Supply The high voltages required for the CRT, which has an acceleration potential of 1.5 kV, are generated by a voltage multiplier circuit controlled by a stabilised power supply. The CRT beam current is controlled by: The intensity potentials network across the Extra High Tension (EHT) supply. During flyback (movement of electron beam from right to left) by the blanking pulses coming from the sawtooth generator via the beam blanking stages to blank the trace during right to left movement of the electron. Regulation of the mains input voltage is achieved by a diode clipper network controlled by a signal fed back from an LED in the + 14 V rectifier supply. # SAMPLING OSCILLOSCOPE (VHF) An ordinary Sampling Oscilloscope has a B.W. of 10 MHz. The HF performance can be improved by means of sampling the input waveform and reconstructing its shape from the sample, i.e. the signal to be observed is sampled and after a few cycles the sampling point is advanced and another sample is taken. The shape of the waveform is reconstructed by joining the sample levels together. The sampling frequency may be as low as 1/10th of the input signal frequency (if the input signal frequency is 100 MHz, the bandwidth of the CRO vertical amplifier can be as low as 10 MHz). As many as 1000 samples are used to reconstruct the original waveform. Figure 7.24 shows a block diagram of a sampling oscilloscope. The input waveform is applied to the sampling gate. The input waveform is sampled whenever a sampling pulse opens the sampling gate. The sampling must be synchronised with the input signal frequency. The signal is delayed in thevertical amplifier, allowing the horizontal sweep to be initiated by the input signal. The waveforms are shown in Fig. 7.25. Fig. 7.25 Various Waveforms at Each Block of a Sampling Oscilloscope At the beginning of each sampling cycle, the trigger pulse activates an oscillator and a linear ramp voltage is generated. This ramp voltage is applied to a voltage comparator which compares the ramp voltage to a staircase generator. When the two voltages are equal in amplitude, the staircase advances one step and a sampling pulse is generated, which opens the sampling gate for a sample of input voltage. The resolution of the final image depends upon the size of the steps of the staircase generator. The smaller the size of the steps the larger the number of samples and higher the resolution of the image. # STORAGE OSCILLOSCOPE Storage targets can be distinguished from standardphosphor targets by their ability to retain a waveform pattern for a long time, independent of phosphor peristence. Two storage techniques are used in oscilloscope CRTs, mesh storage and phosphor storage. A mesh-Storage Oscilloscope uses a dielectric material deposited on a storage mesh as the storage target. This mesh is placed between the deflection plates and the standard phosphor target in the CRT. The writing beam, which is the focussed electron beam of the standard CRT, charges the dieletric material positively where hit. The storage target is then bombarded with low velocity electrons from a flood gun and the positively charged areas of the storage target allow these electrons to pass through to the standardphosphor target and thereby reproduce the stored image on the screen. Thus the mesh storage has both a storage target and a phosphor display target. The phosphor Storage Oscilloscope uses a thin layer of phosphor to serve both as the storage and the display element. Mesh Storag It is used to display Very Low Frequencies (VLF) signals and finds many applications in mechanical and biomedical fields. The conventional scope has a display with a phosphor peristence ranging from a few micro seconds to a few seconds. The persistence can be increased to a few hours from a few seconds. Fig. 7.26 Basic Elements of Storage Mesh CRT A mesh Storage Oscilloscope, shown in Fig. 7.26, contains a dielectric material deposited on a storage mesh, a collector mesh, flood guns and a collimator, in addition to all the elements of a standard CRT. The storage target, a thin deposition of a dielectric material such as Magnesium Fluoride on the storage mesh, makes use of a property known as secondary emission. The writing gun etches a positively charged pattern on the storage mesh or target by knocking off secondary emission electrons. Because of the excellent insulating property of the Magnesium Fluoride coating, this positively charged pattern remains exactly in the position where it is deposited. In order to make a pattern visible, a special electron gun, called the flood gun, is switched on (even after many hours). The electron paths are adjusted by the collimator electrode, which constitutes a low voltage electrostatic lens system (to focus the electron beam), as shown in Fig. 7.27. Most of the electrons are stopped and collected by the collector mesh. Only electrons near the stored positive charge are pulled to the storage target with sufficient force to hit the phosphor screen. The CRT will now display the signal and it will remain visible as long as the flood guns operate. To erase the pattern on the storage mesh, a negative voltage is applied to neutralise the stored positive charge. positive charge results. Since the storage mesh makes use of secondary emission, between the first and second crossover more electrons are emitted than are absorbed by the material, and hence a net Below the first crossover a net negative charge results, since the impinging electrons do not have sufficient energy to force an equal number to be emitted. In order to store a trace, have sufficient energy to force an equal number to be emitted. In order to store a trace, assume that the storage surface is uniformly charged and write gun (beam emission gun) will hit the storage target. Those areas of the storage surface hit by the deflecting beam lose electrons, which are collected by the collector mesh. Hence, the write beam deflection pattern is traced on the storage surface as a positive charge pattern. Since the insulation of the dielectric material is high enough to prevent any loss of charge for a considerable length of time, the pattern is stored. To view, the stored trace, a flood gun is used when the write gun is turned off. The flood gun, biased very near the storage mesh potential, emits a flood of electrons which move towards the collector mesh, since it is biased slightly more positive than the deflection region. The collimator, a conductive coating on the CRT envelope with an applied potential, helps to align the flood electrons so that they approach the storage target perpendicularly. Consider a single channel of Fig. 7.51. The analog voltage input signal is digitised in a 10 bit A/D converter with a resolution of 0.1% (1 part in 1024) and frequency response of 25 kHz. The total digital memory storage capacity is 4096 for a single channel, 2048 for two channels each and 1024 for four channels each. The analog input voltage is sampled at adjustable rates (up to 100,000 samples per second) and data points are read onto the memory. A maximum of 4096 points are storable in this particular instrument. (Sampling rate and memory size is selected to suit the duration and waveform of the physical event being recorded.) Once the sampled record of the event is captured in memory, many useful manipulations are possible, since memory can be read out without being erased. If the memory is read out rapidly and repetitively, an input event which was a single shot transient becomes a repetitive or continuous waveform that can be observed easily on an ordinary scope (not a storage scope). The digital memory also may be read directly (without going through DAC) to, say, a computer where a stored program can manipulate the data in almost any way desired. Pre-triggering recording allows the input signal preceding the trigger points to be recorded. In ordinary triggering the recording process is started by the rise of the input (or some external triggering) above some preset threshold value. As in digital recorder, DSO can be set to record continuously (new data coming into the memory pushes out old data, once memory is full), until the trigger signal is received; then the recording is stopped, thus freezing data received prior to the trigger signal in the memory. An adjustable trigger delay allows operator control of the stop point, so that the trigger may occur near the beginning, middle or end of the stored information. # **Digital Storage Oscilliscope Features** - Sampling rate 20 Mega-samples per second per channel. Max. (simultaneous) capture of both channels. - 2. Pre-trigger: 25%, 50%, 75%, for Single Shot, Roll normal. - 3. Roll mode: (Continuous and Single Shot with Pre-trigger of 25%, 50%, 75%) - 4. Single shot (0.5 p.s Single shot @ 10 pts. /div resolution with pre-trigger 25%, 50%, 75%) - Digital Sweep rate: 0.5. μs/cm to 50 sec/cm, (event as long as 8.33 minutes can be captured) - 6. Computer built in Interface: (RS 232 Serial port and Centronics Parallel interface).